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Viscous fingering dynamics driven by centrifugal forcing is studied for arbitrary viscosity contrast. Theo-
retical methods, including exact solutions, and numerics based on a phase-field approach are used. Both
confirm that pinch-off singularities in patterns originated from the centrifugally driven instability may occur
spontaneously and be inherent to the two-dimensional Hele-Shaw dynamics. They are systematically more
frequent for lower viscosity contrasts consistently with experimental evidence. The analytical insights provide
an interpretation of this fact in terms of the asymptotic matching of the different regions of the fingering
patterns. The phase-field numerical scheme is shown to be particularly adequate to elucidate the existence of
finite-time singularities through the dependence of the singularity time on the interface thickness, in particular
for varying viscosity contrast.
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I. INTRODUCTION

Topological singularities such as interface pinch-off in
fluid flows have been the object of intense study in the last
decades �1–12�. The unavoidable breakdown of the hydrody-
namic description of a thin fluid filament at pinch-off is re-
flected in the spontaneous generation of singular behavior at
a finite time. In the neighborhood of such singularities the
problem might become scale-free giving rise to self-similar
scaling behavior for which some degree of universality is
naturally expected �1�. Interestingly, a continuum hydrody-
namic description may correctly predict the occurrence of
finite-time singularities out of a smooth initial condition and
be continued uniquely through the singularity even though it
may not implement the interface breakup and reconnection,
which necessarily involves microscopic physics. This is the
case, for instance, of three-dimensional �3D� jets �1�.

In contrast to the case of 3D fluid filaments, two-
dimensional �2D� filaments are not linearly unstable under
capillary forces alone and their dynamics may be more in-
volved and less universal. Interface breakup has been studied
in 2D Stokes flow �5� and in particular in the case of Hele-
Shaw �H-S� flows, a paradigmatic system in fluid dynamics
and pattern formation �13–16�. It is well known that the 2D
H-S dynamics can lead to finite-time pinch-off �6,7�. Surface
tension alone has been shown to drive a configuration of two
droplets of fluid connected by a neck to finite-time pinch-off
in two-dimensional simulations for initial conditions suffi-
ciently close to pinch-off �11,12�. A thin fluid filament can
also be made to pinch at finite time under some specific
boundary conditions �6–10�.

Here we will address the case of centrifugally-driven vis-
cous fingering in H–S cells �17–20�, a setup which is particu-
larly interesting from the perspective of pinch-off singulari-
ties for two main reasons. First, because in this problem
configurations close to pinch-off appear naturally as the ge-
neric asymptotic evolution after a morphological instability
starting from initial conditions arbitrarily distant from such
pinching morphologies. This is in contrast to most previous
studies, where the focus was on the local self-similar struc-

ture of the singularities and the occurrence of the singulari-
ties was rather induced by the choice of initial or boundary
conditions. The second reason is that the singularities gener-
ated in this setup result from the competition of capillary vs
centrifugal forces and the self-similar nature of the singulari-
ties themselves is likely to be inherently different from the
cases studied before driven solely by capillary forces. This
second point will not be addressed here. Our main focus will
be on the dynamics of the approach to pinch-off and specifi-
cally on whether the singularities occur at finite time. In
particular we will be interested in elucidating the connection
between the singularities of the 2D H-S problem and those
observed in experiments, which unavoidably include spuri-
ous 3D effects.

�i� Viscosity contrast: the viscosity Atwood ratio of the
two fluids, or viscosity contrast A, has been shown to have
strong nontrivial effects on the nonlinear dynamics of finger-
ing patterns in general �15,21,22�. For pinching phenomena
in particular, in 3D it is known that this parameter has a
strong influence on the interface shape near pinching �23�. In
2D H-S flows, the situation is quite involved. Experiments of
air displacing a liquid in a channel geometry �A=1� show
that fingers formed in the viscosity-driven morphological in-
stability compete until a single finger is left �13�, but the
necks of the transient and final fingers do not pinch. In con-
trast, when a denser liquid displaces a second less dense
liquid of similar viscosity �typically A�0–0.5� in a tilted
channel, the density-driven morphological instability gives
rise to fingers that now do not compete as efficiently as for
high viscosity contrast but elongate to form thin filaments
with a droplet at their tip �22� which can indeed pinch off
�21�. From those results one could be tempted to correlate
the dependence of the pinch-off frequency on A to the occur-
rence of thin filaments �which is indeed sensitive to A�. The
rotating setup, however, produces elongated thin fingers re-
gardless of A. In this case, the experimental evidence shows
that indeed pinch-off events occur much more often and sys-
tematically for low A �two liquids� than for high A �liquid
and air�.
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�ii� Intrinsic vs extrinsic singularities: a fundamental
question that underlies the present discussion, and the con-
nection between the effective 2D description of the system
and the real experiments, concerns the role of the cell gap as
a natural cutoff length scale in the problem. The usual H-S
model is based on the fact that, for sufficiently small b �low
Reynolds number limit� the problem can be formally pro-
jected into an effective 2D description provided that the
flows are not resolved at scales comparable to the cell gap b.
We refer to this standard description of flows in H-S cells as
the 2D Hele-Shaw model. The actual pinch-off of a fluid
filament in our system, however, will unavoidably cross this
limit of validity of the 2D description when the distance
between the two approaching interfaces is comparable or
smaller than b. Therefore, other effects associated to the ac-
tual 3D structure of the interface will necessarily be present
at pinch-off in any physical realization of our system in a
Hele-Shaw cell. A central point in our present discussion is
to elucidate whether and when the pinch-off singularities
may be intrinsic �inherent to the 2D H-S model� or extrinsic
�associated to 3D effects, not contained in the 2D H-S
model�. In the latter case, the occurrence of singularities
could be potentially modified by changing the experimental
conditions while keeping A and dimensionless surface ten-
sion B fixed �for instance delayed by decreasing b�. Simi-
larly, the systematic difference on pinch-off events observed
between experiments with an air-liquid interface and those
with two liquids could be due either to the difference in
wetting conditions or inherent to the difference of viscosity
contrast A. This point has clear experimental relevance but is
very difficult to elucidate experimentally. Discriminating on
the extrinsic vs intrinsic nature of the singularities in the 2D
H-S model from numerical simulations could certainly
clarify the issue.

�iii� Phase-field approach: the precise analysis of the
pinch-off singularities by numerical means is usually done in
the so-called lubrication approximation. The problem is in-
herently nonlinear and is known to be very delicate and nu-
merically demanding, in particular for 2D, even if the lubri-
cation approximation renders the problem local, as for A=1
�11,12�. This strategy is applied to the case of rotating H-S
flows with A=1 in the accompanying paper, Ref. �24�. How-
ever, for A�1, the lubrication approximation is nonlocal and
the problem has a higher level of difficulty �24�. Therefore,
for arbitrary A we propose an alternative approach based on
a diffuse-interface �i.e., phase-field� description of the prob-
lem, which can handle equally well any viscosity contrast.
Phase-field modeling has been successfully applied to a va-
riety of interfacial problems as a powerful alternative to
sharp-interface, boundary-integral methods �see, for ex-
ample, �25–27��, in particular for Hele-Shaw flows �28–30�,
at the price of introducing a new length scale, the finite
thickness of the interface. This regularizes the pinch-off sin-
gularities and provides an ad hoc mechanism of interface
recombination that allows to continue the dynamics through
the topological change. For the present discussion, however,
it is appealing that the existence of such cutoff does mimic
the role of the real cutoff length b of the H-S model. Indeed,
we will turn the dependence of pinch-off time on the cutoff
into a tool to explore the existence of finite-time singularities

in the 2D model. In this spirit, our approach is closer to an
experimental point of view, where one would like to control
separately, on the one hand, the two dimensionless param-
eters A and B of the 2D H-S model, and on the other hand,
the cutoff b. A second reason to use phase-field modeling is
that the numerical simulation turns out to be much simpler
than sharp-interface methods, in particular, if A is to be
changed arbitrarily �27–29�.

Consistently with experiments, we find that singularities
occur more frequently for low A and seem to be intrinsic in
this parameter range �for more general settings than those
originally studied in Refs. �6–12��. Remarkably, the phase-
field approach is conclusive in this case �which is most de-
manding for sharp-interface methods� but not quite for high
viscosity contrast �A=1�. Fortunately, the latter is more ame-
nable to sharp-interface methods as presented in Ref. �24�,
where it is shown that, while finite-time singularities may
exist in the appropriate circumstances for A=1, they do not
exist when centrifugal forces are dominant—in situations
where singularities actually occur for A�1.

�iv� Layout: Sec. II briefly reviews the existing experi-
mental evidence and defines the mathematical formulation of
the problem. In Sec. III we discuss the theoretical framework
and some analytical insights. Phase-field simulations are pre-
sented and discussed in Sec. IV and conclusions are summa-
rized in Sec. V.

II. PROBLEM

A. Setup and physical parameters

Our specific H-S setup consists of two parallel horizontal
plates with a small gap b in between. The cell spins around
its vertical axis at constant angular velocity �. A drop of a
liquid of density �in occupies the inner region of the cell,
while a second less dense fluid occupies the outer region
��out��in�. Initially the inner drop is centered with the rota-
tion axis and has an approximately circular shape of radius
R0. If the centrifugal forcing is strong enough to overcome
capillary forces, the circular shape is unstable leading to vis-
cous fingering patterns. The fingers are stretched by the cen-
trifugal forcing and, thus, evolve into elongated thin fila-
ments with a drop at the end. The problem depends on two
dimensionless parameters, the viscosity contrast

A =
�in − �out

�in + �out
, �1�

where �in and �out are the dynamic viscosities of the inner
and outer fluids, respectively, and the dimensionless surface
tension

B =
�

���2R0
3 , �2�

where ��=�in−�out, which measures the relative strength of
capillary to centrifugal forces.

B. Previous experimental evidence

We briefly recall the main experimental results on rotating
Hele-Shaw flows relevant to the present study. They were
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described and discussed extensively in Refs. �17,19,31� for
both high and low viscosity contrasts. Figures 1�a,b� and
1�c,d� show the typical patterns formed at two different
stages, for high �A=1� and low �A�0.45� viscosity contrast,
respectively. While the whole range of A could not be
spanned, additional numerical evidence shows that the dy-
namics is quite insensitive to A for most of the range, except
very close to A=1, where a different behavior sets in. This
has been discussed in Refs. �16,19,32�. This observation ap-
plies also for pinching phenomena, where the frequency of
singularities depends only weakly on A, except very close to
A=1, so we essentially distinguish two types of behavior, the
high-contrast case A=1, and the low-contrast case, for most
of the range A�1. It is worth mentioning that the experi-
mental results for A=1, with silicone oil displacing air, were
all performed with prewetted cells to avoid contact-line dy-
namic effects. With prewetted cells, the A=1 dynamics is
closest to the standard 2D Hele-Shaw model as discussed in
Ref. �31�.

In addition to some morphological differences, mostly
concerning the fingers of the outer fluid penetrating the inner
one �33�, the most striking difference between low and high
viscosity contrast experiments is the systematic droplet
pinch-off observed for A�0.45 and not for A=1. For the
latter, filaments keep on stretching until they reach a width
comparable to the cell gap thickness with very rare pinch-off
in the observable time.

C. 2D free-boundary problem

The standard Hele-Shaw free-boundary problem is de-
fined by the incompressibility condition �� ·v� i=0, where v� i is
the 2D averaged velocity field in fluid i, together with the
continuity of normal velocity across the interface and the
tangential velocity jump as boundary conditions. We write
down the problem in dimensionless variables by measuring
lengths in units of the initial drop radius R0 and time in units
of t�=12��in+�out� /b2�2��.

It is convenient for the phase-field approach to use the
formulation in terms of the stream function � defined
through u� =�� 	�ẑ �where u� is now the dimensionless fluid
velocity and ẑ is the direction perpendicular to the plates�.
The stream function is harmonic but, contrary to the pressure
field, � is continuous across the interface. In terms of the
stream function the free-boundary problem is fully specified
by the following governing equations �15,30�:

�2� = 0, �3a�

�s��in = �s��out = − un, �3b�

�n��out − �n��in = 
 , �3c�

where s and n are coordinates tangential and normal to the
interface, respectively. The magnitude of the tangential
velocity jump is the strength 
 of the �singular� vorticity at
the interface, 
��+A��n� �in+�n� �out�, where � /2
��B�� �−r�� · ŝ is its local part, with � being the in-plane cur-
vature ��0 for a circle� and r� the radial coordinate. The
explicit form of the vorticity is what defines specifically the
case with rotation formulated in the corotating frame �17�.

D. Phase-field model

Here we present the phase-field model for rotating H-S
flows, as a direct extension of the one presented in Refs.
�28,29�, with the corresponding modification of the vorticity
at the interface to account for the centrifugal forcing:

�̃
��

�t
= �2� + A�� · ���� �� +

1

�

1

2�2
�����1 − �2� , �4a�

�2��

�t
= f��� + �2�2� + �2������� �� + �2ẑ · ��� � 	 �� �� ,

�4b�

where � is the phase field, an auxiliary field distinguishing
between the two fluids, f������1−�2�, ���� /2
� ŝ��� · �B�� ����−r��, and �����−�� · n̂���, with n̂���
��� � / ��� �� and ŝ���� n̂���	 ẑ.

Apart from the physical control parameters A and B, the
dynamics in this model also depends on an artificial interface
thickness � and a relaxation time for the stream function �̃
which may be taken in general as different for numerical
convenience. In the limit � , �̃→0, the dynamics is strictly
that of Eqs. �3a�–�3c�. Convergence with � , �̃ was discussed
in Ref. �29�.

III. THEORETICAL ANALYSIS

A. Asymptotics

Before analyzing our numerical results, it is useful to de-
fine the theoretical framework that arises from a series of
analytical results on the asymptotics of different regions of
the pattern. We will see that some analytical insights help us
understand in simple physical terms the formation of singu-

(a) (b)

(c) (d)

FIG. 1. Pattern evolution for A=1, b=0.5 mm, �
=120 rev /min, and R0=50 mm �a,b�, and A�0.45, �
=180 rev /min, and R0=38 mm �c,d�. Snapshots of size 3R0

	3R0 are shown at times 16.5 s �a�, 22.5 s �b�, 122 s �c�, and 158
s �d� after the cell was set in rotation.
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larities and reinforce the strength of the conclusions from the
numerics.

The long time regime emerging from the morphological
instability of a nearly circular interface consists of long and
thin filaments ended in a nearly circular droplet that acceler-
ates away from the cell center, while a fraction of the mass of
the initial circle is trapped around the axis. For a perfectly
symmetric n-folded configuration the physical picture is
schematically depicted in Fig. 2. Three different regions may
be distinguished according to their asymptotics. First is a
central region of finite area that tends to a stationary shape
with cusplike protrusions which connect with the fluid fila-
ments. This region around the cell axis will be referred to as
the inner region. The lubrication region will be that of the
long and thin fluid filament, depicted as dashed lines in Fig.
2, which is governed by the lubrication approximation and
where the pinch-off singularities may possibly occur. Finally,
we will refer to the outer region as the one closing the fluid
filaments with nearly circular droplets of finite area, which
accelerate exponentially away. The asymptotics of the three
regions can be analytically studied separately. While the
matching conditions have to be worked out carefully and
may in general be nontrivial, as discussed in Ref. �24� for
A=1, we will see that for low A the lowest-order asymptotics
already yields interesting clues on a possible mechanism of
singularity formation.

B. Inner region: starfish solutions

The asymptotics of the inner region of a n-fold symmetric
pattern �for n2� is governed by what we call starfish solu-
tions �see Fig. 2�. These are stationary shapes, where capil-
lary forces balance exactly centrifugal forces. These shapes
are independent of A and must satisfy the condition of zero
vorticity,

��s� = ���2r� · ŝ . �5�

Similar classes of solutions were reported in Ref. �34�. Our
starfish solutions are fundamentally different in that the
above equation is fulfilled only piecewise, thus, allowing for
boundary conditions that involve cusps. Remarkably, these
solutions are stable with respect to perturbations preserving

the n-fold symmetry, in contrast to those of Ref. �34�, which
are continuous but change concavity and are unstable. The
smooth matching to the lubrication region removes the cusps
and requires �→0 at the cusps of the starfish solutions. The
physical interpretation of the cusp is that the two sides must
be continued as two superposed radial straight lines which
can be connected at infinity in any smooth nonsingular
shape.

It is interesting to realize that, as an attractor of the dy-
namics for the n-fold symmetric subspace, these solutions
exhibit a different topology from the initial condition �the
solution consists of n disconnected arcs with n missing
points at the cusps� clearly evoking the existence of topologi-
cal singularities at least at infinite time. We have explicitly
checked the approach to these solutions in our phase-field
simulations �results not shown�. For nonsymmetric initial
conditions, these solutions have still some relevance as
saddle points of the dynamics explaining the transient slow-
ing down observed in multifinger experiments �19�.

C. Scaling of the lubrication region

To analyze the asymptotics of a thin radial filament �Fig.
3� we rely on the lubrication approximation. This has been
derived in detail for the present problem in Ref. �24�. For the
height h�x , t� of the interface along a radial coordinate x, this
reads

1 + A

2
�th = − �x�xh� − B�x�h�x

3h� −
1 − A

1 + A
�x�hH��x�xh��� ,

�6�

where the integral operator H is a Hilbert transform. Note
that the two relevant parameters A and B appear associated to
different terms. The first term in the right-hand side accounts
for the centrifugal force and is the lowest-order contribution
in the lubrication expansion �35�. The two other terms con-
stitute the next to leading order contributions. The local term
associated to capillarity B is exactly the same as for the
purely capillary driven case, while the nonlocal one is asso-
ciated to viscosity contrast A. Note that the case A=1 is
manifestly special in that the lubrication approximation re-
mains local.

We define the basic scaling of the filaments as that pro-
vided by the lowest order of the lubrication approximation
and will address later how the effect of the other terms may
modify these asymptotics. Keeping only this first term in the
right-hand side of Eq. �6�, any given initial condition h0�x�
evolves following the simple scaling h�x , t�=L�t�h0�L�t�x�,
with L�t�=e−K�t and K�=2 / �1+A�. This implies that, in gen-

R
0

FIG. 2. Asymptotic shapes of different regions of the n-fold
symmetric pattern for n=3 and n=18: central region, starfish �sta-
tionary� solutions; dashed lines, infinitely thin filaments �lubrication
region�; circles, outer solution tending to circular droplets moving
infinitely apart with an exponential velocity. Arrows indicate the
direction of the arclength coordinate.

vn

vx

y

x
h(x) α

x=Rn

vx

0

ŝ
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FIG. 3. Sketch of a filament of fluid with a droplet at its tip.
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eral, any radial fluid filament should stretch and narrow to
produce pinch-off at least at infinite time. Note that the de-
pendence on A here is an artifact of the chosen dimensionless
units. In fact, the characteristic time scale of this exponential
scaling is t�=12�in /b2�2�� so that it only depends on the
viscosity of the inner fluid because to lowest order the prob-
lem is decoupled from the outer fluid. As we will see, this
point will have consequences for the matching with the out-
going droplet at the end of the filament.

D. Outer region: droplet solutions

To complete the analysis we must check if the nearly
circular droplet that closes the filament of fluid may be as-
ymptotically approaching some other attractor of the dynam-
ics. We find that an isolated, circular, off-center droplet is an
exact solution for arbitrary A, which preserves its circular
shape provided the distance of its center to the rotation axis
grows exponentially as R�t�=R�0�eKt, with K=1. This can be
proved by transforming the equations of motion into the ref-
erence frame of the droplet center. The vorticity 
 in that
frame gets an additional term of the form �1−A�R�t�x̂ · ŝ. The
case A=1, first reported in Ref. �36�, becomes trivial, since
the equations are fully invariant with respect to this change.
This implies that all the dynamics, including the nonlinear
regime, are exactly mapped. For A�1, instead, the evolution
of the shape of a perturbed circle at the cell center or initially
away from it is no longer the same. Nevertheless, one can
prove that a circle exponentially moving off center is also an
exact solution with the same rate K=1, with a nontrivial
velocity field of the form

u� in = Ṙx̂ , �7a�

u�out = Ṙ�r0/r��2�x̂ cos 2� + ŷ sin 2�� , �7b�

where r0 is the radius of the droplet and r� ,� are polar co-
ordinates centered at the droplet �see Fig. 3�.

Note that the isolated droplet moves exponentially with a
characteristic time scale t�=12��in+�out� /b2�2�� that de-
pends on the viscosity of the outer fluid that must be
dragged, while the lubrication region scales exponentially �to
lowest order� with the characteristic time t�=12�in /b2�2��,
which involves only the inner fluid viscosity. The mismatch
between these two time scales is at the root of the qualitative
distinction between A=1 and A�1. The scaling of the
thinning/stretching of the radial filaments actually expresses
mass conservation, so the fact that for A=1 the exponential
rate exactly coincides with the asymptotic velocity of the
droplet at the end suggests that a “smooth” matching is plau-
sible. On the contrary, the mismatch of time scales for A
�1 suggests that the mass expelled at the end of the filament
cannot be smoothly absorbed in the displacement of a sta-
tionary droplet so that a singularity is likely to build up. This
yields a simple intuitive physical explanation of why one
may expect a different behavior for A=1 and A�1 as far as
finite-time singularities are concerned. A more precise analy-
sis of this matching for A=1 is performed in Ref. �24�.

IV. NUMERICAL RESULTS

A. Numerical procedure

We numerically integrate the phase-field model using a
forward-time-centered-space scheme. The time step dt is
taken to be close to the stability limit: dt=0.2�̃dx2, where dx
is the mesh spacing. We have tested that a smaller dt does
not affect the results. Convergence of the solution is also
tested changing dx �dx=� generally suffices as shown in
�29��. For reliable quantitative comparison with theory and
experiments, we also check convergence of the time constant
K in � and �̃, since �̃ conveys some finite diffusion time to
the flow and � delays the interface advance with respect to
the normal fluid velocities �28�. A value of �̃=0.5 turns out to
guarantee accurate results. Convergence in � is more cum-
bersome and it is checked case by case.

Our initial condition is some perturbation of a centered
circle of unit radius, r=1+�r���, where r and � are polar
coordinates with respect to the rotation axis and �r����1.
In the following subsections, except for Sec. IV B, we con-
sider only identical fingers �n-fold symmetry�, �r���
= �2� /n�q cos�n��, where q is the amplitude to wavelength
ratio of the perturbation and n is the �integer� number of
fingers. Unless otherwise stated, we use q=0.05 and a di-
mensionless surface tension B for which n is the most un-
stable mode in the linear regime except for the case n=2,
B=0.01, and q=0.2 in Figs. 6 and 7, where a smaller dimen-
sionless surface tension is purposely tested.

B. Qualitative comparison with experiments

In order to compare with the patterns shown in Fig. 1,
which have 15–16 filaments for A=1 �Figs. 1�a� and 1�b��
and 20–21 for A�0.45 �Figs. 1�c� and 1�d��, we use a di-
mensionless surface tension B=1.03	10−3, which corre-
sponds to a most unstable mode n=18. We use exactly the
same initial condition and physical and computational pa-
rameters for both high and low viscosity contrasts, so that the
effects of A can be clearly isolated. The initial condition for
the simulation has been chosen to reproduce only roughly the
specific initial conditions of the corresponding experiments
depicted in Fig. 1. Finally, we take the less refined choices
dx=� and �̃=1 with an interface thickness down to �
=0.005 in order to avoid possible spurious pinch-off events.
As we will see for the dumbbell-shaped patterns in Sec.
IV C, we find that, whenever pinch-off occurs, a lower value
of the ratio dx /� does not prevent it but rather anticipates it.
Figure 4 is to be qualitatively compared to its experimental
counterpart of Fig. 1. Patterns are shown at two different
times: t=1.32 �left� and t=1.74 �right� for three different
viscosity contrasts. The snapshots correspond to the times
when the pattern envelope has roughly attained twice �Figs.
1�a� and 1�c� and Figs. 4�a�, 4�c�, and 4�e�� and three times
�Figs. 1�b� and 1�d� and Figs. 4�b�, 4�d�, and 4�f�� the initial
radius.

Let us first compare patterns at the earlier stage �Fig. 1�a�
with Fig. 4�a�, and Fig. 1�c� with Fig. 4�c��. The similarity
between experiments and simulations is remarkable espe-
cially taking into account that the initial conditions were only
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similar. From this earlier stage it would seem that pinch-off
is not significantly more present for low �A=0.5� than for
high �A=1� viscosity contrast. However, the simulation of-
fers us the possibility to go to the ideal limit A=0. Figure
4�e� shows that for A=0 most droplets have pinched off by
the same time. Comparing Figs. 4�a�, 4�c�, and 4�e� between
them, it is clear that pinch-off arises as the viscosity contrast
is decreased.

At later times the experiments still show no pinch-off for
A=1 �Fig. 1�b��, while most filaments have emitted at least
one droplet for A�0.45 �Fig. 1�d��. The simulations would
seem less conclusive, since they display some pinch-off
events for A=1 �Fig. 4�b��. However, these are most likely to
be spurious: they occur for very narrow filaments, whose
width is comparable to the interface thickness �. Most im-
portantly, pinching is clearly inhibited as � is decreased: the
same run with a larger value of � displays more pinch-off
events at a given time.

Simulations for low viscosity contrasts �A=0.5, Fig. 4�d�
and A=0, Fig. 4�f�� show an increasing number of pinching
events as A is reduced. The first pinch-off at the end of a
filament does not significantly change with � as will be the
case for dumbbell-shaped patterns in Sec. IV C. These re-
sults already indicate that these first pinch-off events are in-
deed not spurious.

Phase-field simulations of irregular multifinger configura-
tions from noisy perturbations of the circular interface thus
confirm the tendency observed in experiments suggesting
that this could not be attributed to different wetting condi-
tions or other 3D effects. In addition, the simulations also
suggest that the pinch-off events for A=1 are likely to be
extrinsic to the 2D H-S dynamics, while those for A�1 are

likely to be intrinsic. In the coming sections we will pursue
this issue in more detail.

C. Intrinsic versus extrinsic pinch-off events

For simplicity and to allow direct comparison with previ-
ous studies �11,12�, we first focus on the study of finite-time
pinch-off by simulating the evolution of dumbbell-shaped
initial conditions �n=2�. Figure 5 displays typical patterns
obtained at the end of a run �A=1� or just after the first
pinch-off �A=0�. In the last case secondary pinch-off events
take place that give rise to satellite droplets. Figure 6 �see
further discussion in Sec. IV D� shows the evolution of the
filament thickness at the midpoint for the whole run �A=1�
or up to the relaxation of the last central segment into a
round shape, which makes the thickness increase again
�A=0�.

The results of our simulations are conclusive in that
pinch-off events are systematically observed for low
�A=0,0.5�, but not for high �A=0.8,1� viscosity contrasts.
This is fully consistent with experiments. Yet, the question
remains as to what extent such singularities are intrinsic to
the 2D H-S dynamics. One of the interesting reasons to use a

FIG. 4. Pattern evolution for a random initial condition �see
text� and B=1.03	10−3, �=0.005, dx=�, �̃=1, and A=1 �a,b�, A
=0.5 �c,d�, A=0 �e,f�. Snapshots of size 3R0	3R0 are shown at t
=1.32 �left� and t=1.74 �right�.

t=0

A=1

A=0

FIG. 5. Filament thinning. Top: initial condition �n=2, q
=0.05�. Middle and bottom: one later interface for A=1 and A=0.
The other parameters are B=0.09, �=0.008, and dx=� /2.

0 1 2pinch-off 3pinch-off

t/t*

0.01

0.1

1

2h
/R

0

A=1

A=0

A=1

A=0

B=0.09

B=0.01

FIG. 6. Filament thinning. Width at rotation axis �in log scale�
versus time. Dashed, solid, and dotted line�s�: dx=�, dx=� /2, and
dx=� /4, respectively. Upper curves �B=0.09�: �=0.008 �runs in
Fig. 5, q=0.05�. Lower curves �B=0.01, q=0.2�: three curves at
�=0.02, 0.01, and 0.005 for dx=� and three more at �=0.02, 0.01,
and 0.0067 for dx=� /2 shown for each value of A. For A=0, lower
curves correspond to lower values of �. The only dx=� /4 curve is
for A=1, �=0.02. The dashed �solid� vertical lines indicate the in-
terval during which the droplet at the tip pinches off for dx
=��� /2�.
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phase-field approach in this respect is that the dependence on
the cutoff length � of the interface thickness can be used to
some extent to elucidate this point. If the singularity is in-
trinsic, its location in time will converge with � to the correct
value of time, while if the time of the singularity is system-
atically postponed without bound, this will signal its extrin-
sic character at least up to the time of observation.

The dependence of pinch-off time on � is analyzed in Fig.
7 for both n=2 and n=4. For A=0 the pinch-off time be-
comes practically insensitive to � up to values of the inter-
face thickness that reach beyond typical values of the experi-
mental cutoff associated with the gap thickness in the
experiments described in Sec. II B. The behavior is remark-
ably different for A=1. The pinch-off time increases mono-
tonically as � is reduced. This behavior is consistent with the
spurious pinch-off associated to the finite thickness of the
interface in the phase-field scheme. In fact, within the phase-
field formulation, the interface pinch-off is expected to occur
whenever the filament thickness reaches a threshold value of
O���. Accordingly, if the filament thickness decays exponen-
tially, then the pinch-off time should scale as �1 /K��ln�1 /��.
This prediction is roughly satisfied in the central region of
the curve for n=2 with the theoretical value K�=1. Signifi-
cant deviations of this prediction for smaller � and for the
curve n=4 result from additional dependence on � due to the
spatial shift of the pinch-off point or to deviations from the
exponential scaling. The latter may originate from nonlinear
orders in the lubrication approximation �Eq. �6�� from
finite-� corrections to the phase-field model that modify the
rate of approach of the two interfaces and from effective
boundary conditions enforced by the matching with the drop-
let �nonlubrication� region �24�, when the pinch-off point is
relatively close to the droplet as for n=4.

From this evidence we can conclude that finite-time
pinch-off appears to be intrinsic to the 2D H-S dynamics for

low viscosity contrast at least within the computational limi-
tations imposed by the phase-field approach. Strictly speak-
ing, however, we cannot rule out the possibility of changes in
the pinch-off dynamics at smaller length scales similarly to
the ones observed for A=1 for filaments thinner than 10−5 as
in Refs. �11,12,24�. Such effects, if present, are likely to be
irrelevant for reasonable experimental conditions, so for
practical purposes, finite-time pinch-off must be considered
as intrinsic for low viscosity contrast.

On the contrary, when pinch-off is observed for A=1, the
� dependence of the pinch-off time reflects the spurious na-
ture of the singularity. Again, while this suggests that in this
case the pinch-off is extrinsic, it cannot be ruled out that
intrinsic singularities appear at much longer times. The
phase-field approach is not appropriate to elucidate this
point, but in this case, sharp-interface computations based on
the lubrication approximation can be used to pursue the
problem much further as reported in detail in Ref. �24�. In
this case, the numerics confirms that for A=1, when the
problem is dominated by centrifugal forces �small B� as in
the regime studied here, finite-time singularities do not oc-
cur.

D. Scaling of thin filaments

In Fig. 6 we see that the asymptotic decay of the filament
thickness is clearly consistent with an exponential for A=1
as predicted by the lowest order of the lubrication approxi-
mation, although it is only observed for roughly one decade
in time. For A=0 the filament thinning clearly deviates more
from exponential. Deviations could in principle be due to the
local or nonlocal next-order terms in the lubrication equation
�6�, but the same behavior and slopes are observed for the
two different values of the dimensionless surface tension B
tested. That rules out the possible implication of the local
term in B in the range studied. This capillary term is ex-
pected to become important once a singularity is starting to
build up. That could possibly happen for A=1 but for much
larger values of B �24�. Moreover, a direct observation of the
interface for A=0 right before pinching and for A=1 at the
same time shows that both are equally straight. The different
time behavior is hence a clear signature of the nonlocal term
in 1−A in the lubrication equation �6�.

For A=1, the thinning rate K� is well relaxed to its
asymptotic value for the last third of the runs and very ro-
bust. By looking at its convergence in � and dx for the case
B=0.01, we could establish it unambiguously at K�
=0.99–1.00, in full agreement with the lowest-order predic-
tion of the lubrication equation. For A=0 the relaxation is
much slower and satellite drops reach the center when the
rate begins to approach �from above� a value of K�=2. No
disturbance from the previous pinch-off events is apparent.
Runs for A=0.5 and A=0.8 �not shown� are also roughly
consistent with a rate K�=2 / �1+A�.

E. Matching of filaments and droplets

In Sec. III D we have shown that an isolated circular
droplet is an exact solution moving exponentially with a rate
K=1. Furthermore, we also know that the lowest-order lubri-

FIG. 7. Pinch-off time as a function of interface thickness � in
the phase-field model �dx=� /2, �̃=0.5�. Black �gray� symbols rep-
resent A=0�A=1�. Squares correspond to dumbbells �n=2, and B
=0.01, q=0.2� and diamonds to n=4 �four fingers, B=0.0213, q
=0.05�. In all cases, pinch-off occurs in the neck close to the ad-
vancing drop �as seen in Fig. 5� except for A=1, n=2, where it
happens far away from the drop at the center of the cell. In this last
case, a continuous straight line indicates the prediction explained in
the text �with the theoretical slope�.
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cation theory yields and exponential thinning/stretching rate
of K�=2 / �1+A�. This means that for A=1 an isolated droplet
turns out to move exponentially with precisely the same rate
as the filament thinning �K=K��, so the filament scaling may
remain essentially unaffected. More precisely, the effect of
the droplet will be reduced to an appropriate boundary con-
dition on the �local� lubrication equation �24�. On the other
hand, for A�1 we have K�K�. In other words, an isolated
circular droplet escapes exponentially with a rate smaller
than that of the filament thinning and stretching. For A=0
there is a factor 2 between these two rates. This clearly sig-
nals that the picture of a constant area droplet attached to the
filament works naturally for A=1 and not for A�1. In fact,
mass conservation implies that the thinning of the filament
must be exactly compensated by the stretching, so a droplet
that does not move with the same exponential rate cannot
reach a finite-area stationary shape. In this section we char-
acterize numerically the motion of the droplets at the tip of
the fingers and compare it with the motion of isolated drop-
lets.

Figure 8 shows the evolution of the radial coordinate of a
droplet center of mass for the dumbbell-shaped pattern in
Fig. 5 �n=2, dashed lines� and for some of the outermost
droplets in Fig. 4 �n=18, solid lines�, compared to that of an
isolated circular droplet �n=1, dotted lines�. Thick �thinner�
lines correspond to A=1�0�.

Clearly, all droplets scale with roughly the same rate m,
although runs with A=1 are closer to exponential. More pre-
cisely, for A=1�0�, we get m=0.8�0.7� for n=2, m
=0.82�0.75� for n=18, and m=0.88�0.83� for n=1. Runs for
n=4, 6, 8, 11, and 12 fingers and for intermediate values of
the viscosity contrast �A=0.5,0.8� give similar results.

Since all droplets scale with the same rate, roughly inde-
pendent of A and close to K=1, it is clear that the droplet

asymptotics is dominated by that of an isolated droplet re-
gardless of viscosity contrast. This rate is also found to be
insensitive to eventual pinch-off; in particular, a droplet
which pinches off only at the end of the run �marked with
“+” in Fig. 4� scales with the same rate as one of the first to
pinch �marked with “x” in Fig. 4�. The same rate close to
K=1 also holds for an isolated droplet �dotted lines in Fig.
8�.

In summary, a clear mismatch is observed in the simula-
tions between the exponential rate of the droplet, always
close to K=1 and that of the filament thinning, close to K�
=2 / �1+A�; the mismatch becomes more significant for
smaller A. Accordingly, except for A=1, the droplet velocity
is smaller than the filament stretching predicted by the
lowest-order lubrication theory, which is forced by mass con-
servation to scale as the thinning of the filament. This im-
plies that the problem for A�1 cannot actually be separated
into two regions, one filament approaching the exponential
thinning and one droplet approaching a constant area. There
will typically be an excess mass injected into the droplet
region. Most remarkably, although the nonlocal effects in the
lubrication approximation for A�1 are manifest in the slight
deviation from the exponential scaling, the fact that the
asymptotic thinning is nevertheless approaching the one pre-
dicted by the lowest-order �local� lubrication equation de-
fined by K� �rather than adapting to K� is a clear indication
that a singularity must build up. The occurrence of the pinch-
off singularity, taking place in the regions connecting the
droplet and the filament, can be seen as a consequence of the
incompatibility between the lowest-order asymptotic behav-
ior of the two regions. This provides a simple kinematic
mechanism for singularity formation which would explain in
simple physical terms the qualitative difference between A
=1 and A�1.

V. SUMMARY AND CONCLUSIONS

We have studied the formation of patterns that arise from
a morphological instability and lead generically to the forma-
tion of thin filaments with possible generation of pinch-off
singularities. Such singularities had been observed in experi-
ments, showing a remarkable sensitivity to viscosity contrast,
but the quasi-2D nature of the problem posed the question of
whether and when such singularities are inherent to the 2D
H-S problem �intrinsic� or due to external nonuniversal ef-
fects, related to the physics of the 3D meniscus and contact
with the plates, and thus avoidable in principle �extrinsic�.
We have identified three different asymptotic regimes which
we have studied analytically: �i� a constant mass region at
rest with cusplike shapes that can be obtained exactly; �ii� a
lubrication region where thin fluid filaments are formed; and
�iii� an exact isolated droplet solution moving exponentially
away from the cell center. This analysis has shed some light
into the effect of viscosity contrast on the possible existence
of finite-time singularities showing that a simple matching of
the lubrication and the droplet regions that keeps the fluid
filament stretching exponential �thus avoiding the buildup of
singularities in finite time� is only possible for A=1. For
A�1, the nonlocal effects, manifest in particular through the
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/R
0
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FIG. 8. Radial position �in log scale� of the center-of-mass of
various droplets vs time for A=1 �thick� and A=0 �thinner curves�.
Solid, dashed, and dotted lines correspond to droplets indicated
with an “x” in Figs. 4�a�, 4�b�, 4�e�, and 4�f�, to those in Fig. 5, and
to an off-center circular droplet �B=0.32, �=0.02, dx=� , �̃
=0.1, dt=0.25�̃dx2�, respectively. Curves are shown until the end
of the respective runs, except for the isolated droplet, which is
shown only up to times when finite-size effects of the simulation
box are noticeable. Inset: linear regime of the isolated droplet con-
tinued in the main plot after translating the �dotted� curves to earlier
times for comparison with the others. The inset preserves slopes
with respect to the main plot.
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mismatch between the scaling of the lowest-order lubrication
approximation for the filament and the droplet behavior, are
responsible for the deviation from simple exponential
stretching of the filament, thus opening the way to possible
singularities. These analytical arguments have been explicitly
checked numerically and they provide the rationale for the
interpretation of the results. Within this framework, the oc-
currence of singularities may be associated to a kinematic
mechanism reflecting the incompatibility of the asymptotics
of the two regions, the filament and the droplet, which can
only be smoothly connected in the special case of A=1.

We have proposed to approach the problem numerically
within a phase-field scheme with the idea that the introduc-
tion of a controlled cutoff length � will mimic the existence
of a physical cutoff in the problem, therefore allowing to
elucidate the intrinsic vs extrinsic character of the singulari-
ties in terms of the sensitivity of the occurrence of the �regu-
larized� topological singularities to that cutoff. We have ob-
tained that the same increase in the frequency of occurrence
of singularities with decreasing A observed in experiments is
reproduced. Furthermore, we find that the singularities for
A�1 are likely to be intrinsic in the sense above, since the
singularity time converges to a finite value with decreasing �.
This conclusion is limited to the range of scales accessible
with phase-field methods, but the fact that we have reached a
certain level of analytical understanding for the mechanisms
of buildup of singularities further reinforces our conclusion.
On the other hand, for A=1, pinch-off singularities are much
less frequent and when they occur they can be postponed
without bound by reducing the cutoff length in the simula-
tion. We are thus led to conclude that they are in principle
extrinsic, at least for the range of parameters studied �where
centrifugal forces dominate over capillary forces�. Interest-
ingly, the specificity of the A=1 case, for which the lubrica-
tion approximation is local, allows a complementary study
within the usual sharp-interface methods to properly eluci-
date the competition between centrifugal and capillary forces
in general. This is done in the complementary paper �24�,

where it is shown that intrinsic singularities may be present
for other parameter regimes in the case A=1 but are not
present in the regime studied here. Interestingly, the case
where the phase-field approach is less conclusive �A=1� is
precisely the one best adapted to the sharp-interface/
lubrication methods, while the cases where sharp-interface
methods become particularly involved �A�1� are those for
which the phase-field approach is most conclusive. From a
practical point of view, we would like to stress that the actual
values of the phase-field cutoff reached in our simulations
are comparable or even smaller than reasonable values of
cell-gap cutoff in realistic experiments. Accordingly, with the
necessary word of caution regarding a proper mathematical
statement on the existence of finite-time singularities, our
results are indeed conclusive for many practical purposes.
From a theoretical point of view, it remains an open question
not only the strict proof of existence of singularities but also
the degree of universality of their mathematical structure.
While the evidence for A=1 when capillary forces dominate
points out to a strong sensitivity to initial conditions and
history �11,12,24�, with low degree of universality, singulari-
ties generated by centrifugal forcing for low viscosity con-
trast seem to be rather robust. In particular, the existence of a
kinematic mechanism for singularity formation may be sug-
gestive of a more universal character of them.
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